gerak Lurus Berubah Beraturan

1 komentar

Suatu benda dikatakan melakukan gerak lurus berubah beraturan (GLBB) jika percepatannya selalu konstan. Percepatan merupakan besaran vektor (besaran yang mempunyai besar dan arah). Percepatan konstan berarti besar dan arah percepatan selalu konstan setiap saat. Walaupun besar percepatan suatu benda selalu konstan tetapi jika arah percepatan selalu berubah maka percepatan benda tidak konstan. Demikian juga sebaliknya jika arah percepatan suatu benda selalu konstan tetapi besar percepatan selalu berubah maka percepatan benda tidak konstan.

Karena arah percepatan benda selalu konstan maka benda pasti bergerak pada lintasan lurus. Arah percepatan konstan = arah kecepatan konstan = arah gerakan benda konstan = arah gerakan benda tidak berubah = benda bergerak lurus.Besar percepatan konstan bisa berarti kelajuan bertambah secara konstan atau kelajuan berkurang secara konstan. Ketika kelajuan benda berkurang secara konstan, kadang kita menyebutnya sebagai perlambatan konstan. Untuk gerakan satu dimensi (gerakan pada lintasan lurus), kata percepatan digunakan ketika arah kecepatan = arah percepatan, sedangkan kata perlambatan digunakan ketika arah kecepatan dan percepatan berlawanan.
Contoh 1 : Besar percepatan konstan (kelajuan benda bertambah secara konstan)
Misalnya mula-mula mobil diam. Setelah 1 detik, mobil bergerak dengan kelajuan 2 m/s. Setelah 2 detik mobil bergerak dengan kelajuan 4 m/s. Setelah 3 detik mobil bergerak dengan kelajuan 6 m/s. Setelah 4 detik mobil bergerak dengan kelajuan 8 m/s. Dan seterusnya… Tampak bahwa setiap detik kelajuan mobil bertambah 2 m/s. Kita bisa mengatakan bahwa mobil mengalami percepatan konstan sebesar 2 m/s per sekon = 2 m/s2.
Contoh 2 : Besar perlambatan konstan (kelajuan benda berkurang secara konstan)
Misalnya mula-mula benda bergerak dengan kelajuan 10 km/jam. Setelah 1 detik, benda bergerak dengan kelajuan 8 km/jam. Setelah 2 detik benda bergerak dengan kelajuan 6 km/jam. Setelah 3 detik benda bergerak dengan kelajuan 4 km/jam. Setelah 4 detik benda bergerak dengan kelajuan 2 km/jam. Setelah 5 detik benda berhenti. Tampak bahwa setiap detik kelajuan benda berkurang 2 km/jam. Kita bisa mengatakan bahwa benda mengalami perlambatan konstan sebesar 2 km/jam per sekon.
Perhatikan bahwa ketika dikatakan percepatan, maka yang dimaksudkan adalah percepatan sesaat. Demikian juga sebaliknya, ketika dikatakan percepatan sesaat, maka yang dimaksudkan adalah percepatan. Nah, dalam gerak lurus berubah beraturan (GLBB), percepatan benda selalu konstan setiap saat, karenanya percepatan benda sama dengan percepatan rata-ratanya. Jadi besar percepatan = besar percepatan rata-rata. Demikian juga, arah percepatan = arah percepatan rata-rata.
Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan).
Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)
Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….
Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….
Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.
Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.
Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan alias rumus percepatan rata-rata, di mana
t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0 benda belum bergerak maka kita bisa mengatakan t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi :
Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi
Ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Jangan dihafal, pahami saja cara penurunannya dan rajin latihan soal biar semakin diingat….
Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.
Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rataUntuk mencari nilai x, persamaan di atas kita tulis ulang menjadi :
Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir :
Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :
Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan 2 dapat ditulis menjadi
x = vot + ½ at2
Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui. Kita tulis lagi persamaan a :
Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :
Persamaan di atas tidak berlaku jika percepatan tidak konstan.
Contoh soal 1 :
Sebuah mobil sedang bergerak dengan kecepatan 20 m/s ke utara mengalami percepatan tetap 4 m/s2 selama 2,5 sekon. Tentukan kecepatan akhirnya
Panduan jawaban :
Pada soal, yang diketahui adalah kecepatan awal (v0) = 20 m/s, percepatan (a) = 4 m/s dan waktu tempuh (t) = 2,5 sekon. Karena yang diketahui adalah kecepatan awal, percepatan dan waktu tempuh dan yang ditanyakan adalah kecepatan akhir, maka kita menggunakan persamaan/rumus
Contoh soal 2 :
Sebuah pesawat terbang mulai bergerak dan dipercepat oleh mesinnya 2 m/s2 selama 30,0 s sebelum tinggal landas. Berapa panjang lintasan yang dilalui pesawat selama itu ?
Panduan Jawaban
Yang diketahui adalah percepatan (a) = 2 m/s2 dan waktu tempuh 30,0 s. wah gawat, yang diketahui Cuma dua…. Bingung, tolooooooooooooooooong dong ding dong… pake rumus yang mana, PAKE RUMUS GAWAT DARURAT. He2……
Santai saja. Kalau ada soal seperti itu, kamu harus pake logika juga. Ada satu hal yang tersembunyi, yaitu kecepatan awal (v0). Sebelum bergerak, pesawat itu pasti diam. Berarti v0 = 0.
Yang ditanyakan pada soal itu adalah panjang lintasan yang dilalui pesawat. Tulis dulu persamaannya (hal ini membantu kita untuk mengecek apa saja yang dibutuhkan untuk menyelesaikan soal tersebut)
s = so + vot + ½ at2
Pada soal di atas, S0 = 0, karena pesawat bergerak dari titik acuan nol. Karena semua telah diketahui maka kita langsung menghitung panjang lintasan yang ditempuh pesawat :
s = 0 + (0)(30 s) + ½ (2 m/s2)(30 s)2
s = … LanjuTkaN!
s = 900 m.
Contoh soal 3 :
Sebuah mobil bergerak pada lintasan lurus dengan kecepatan 60 km/jam. karena ada rintangan, sopir menginjak pedal rem sehingga mobil mendapat perlambatan (percepatan yang nilainya negatif) 8 m/s2. berapa jarak yang masih ditempuh mobil setelah pengereman dilakukan ?
Panduan jawaban :
Untuk menyelesaikan soal ini dibutuhkan ketelitian dan logika. Perhatikan bahwa yang ditanyakan adalah jarak yang masih ditempuh setelah pengereman dilakukan. Ini berarti setelah pengereman, mobil tersebut berhenti. dengan demikian kecepatan akhir mobil (vt) = 0. karena kita menghitung jarak setelah pengereman, maka kecepatan awal (v0) mobil = 60 km/jam (dikonversi terlebih dahulu menjadi m/s, 60 km/jam = 16,67 m/s ). perlambatan (percepatan yang bernilai negatif) yang dialami mobil = -8 m/s2. karena yang diketahui adalah vt, vo dan a, sedangkan yang ditanyakan adalah s (t tidak diketahui), maka kita menggunakan persamaan
Dengan demikian, jarak yang masih ditempuh mobil setelah pengereman hingga berhenti = 17,36 meter (yang ditanyakan adalah jarak(besaran skalar))

GRAFIK GLBB
Grafik percepatan terhadap waktu
Gerak lurus berubah beraturan adalah gerak lurus dengan percepatan tetap. Oleh karena itu, grafik percepatan terhadap waktu (a-t) berbentuk garis lurus horisontal, yang sejajar dengan sumbuh t. lihat grafik a – t di bawah
Grafik kecepatan terhadap waktu (v-t) untuk Percepatan Positif
Grafik kecepatan terhadap waktu (v-t), dapat dikelompokkan menjadi dua bagian. Pertama, grafiknya berbentuk garis lurus miring ke atas melalui titik acuan O(0,0), seperti pada gambar di bawah ini. Grafik ini berlaku apabila kecepatan awal (v0) = 0, atau dengan kata lain benda bergerak dari keadaan diam.
Kedua, jika kecepatan awal (v0) tidak nol, grafik v-t tetap berbentuk garis lurus miring ke atas, tetapi untuk t = 0, grafik dimulai dari v0. lihat gambar di bawah
Nilai apa yang diwakili oleh garis miring pada grafik tersebut ?
Pada pelajaran matematika SMP, kita sudah belajar mengenai grafik seperti ini. Persamaan matematis y = mx + n menghasilkan grafik y terhadap x ( y sumbu tegak dan x sumbu datar) seperti pada gambar di bawah.
Kemiringan grafik (gradien) yaitu tangen sudut terhadap sumbu x positif sama dengan nilai m dalam persamaan y = n + m x.
Persamaan y = n + mx mirip dengan persamaan kecepatan GLBB v = v0 + at. Berdasarkan kemiripan ini, jika kemiringan grafik y – x sama dengan m, maka kita dapat mengatakan bahwa kemiringan grafik v-t sama dengan a.
Jadi kemiringan pada grafik kecepatan terhadap waktu (v-t) menyatakan nilai percepatan (a).
Grafik kecepatan terhadap waktu (v-t) untuk Perlambatan
Contoh grafik kecepatan terhadap waktu (v-t) untuk perlambatan dapat anda lihat pada gambar di bawah ini.
Grafik Kedudukan Terhadap Waktu (x-t)
Persamaan kedudukan suatu benda pada GLBB telah kita turunkan pada awal pokok bahasan ini, yakni x = xo + vot + ½ at2
Kedudukan (x) merupakan fungsi kuadrat dalam t. dengan demikian, grafik x – t berbentuk parabola. Untuk nilai percepatan positif (a > 0), grafik x – t berbentuk parabola terbuka ke atas, sebagaimana tampak pada gambar di bawah ini.
Apabila percepatan bernilai negatif (a < 0), di mana benda mengalami perlambatan, grafik x – t akan berbentuk parabola terbuka ke bawah.
Pertanyaan piter :
Tolong kasih penjelan untuk soal ini yach,,he,,he,
1. x(t ) = 4t3 + 8t² + 6t – 5
a. Berapa kecepatan rata-rata pada t0.5 dan
t 2.5
b. Berapa kecepatan sesaat pada t 2
b. Berapa percepatannya ratanya,?
Terimakasih,,he,,he,,salam gbu
Panduan jawaban :
a)            Kecepatan rata-rata pada t = 0,5 dan t = 2,5
t1 = 0,5 dan  t2 = 2,5
x1 = 4t3 + 8t² + 6t – 5
= 4(0,5)3 + 8(0,5)² + 6(0,5) – 5
= 4(0,125) + 8(0,25) + 6(0,5) – 5
= 0,5 + 2 + 3 – 5
= 0,5
x2 = 4t3 + 8t² + 6t – 5
= 4(2,5)3 + 8(2,5)² + 6(2,5) – 5
= 4(15,625) + 8(6,25) + 6(2,5) – 5
= 62,5 + 50 + 15 – 5
= 122,5
b)            Kecepatan sesaat pada t = 2
v = 3(4t2) + 2(8t) + 6
v = 12t2 + 16t + 6
v = 12 (2)2 + 16(2) + 6
v = 48 + 32 + 6
v = 86
Kecepatan sesaat pada t = 2 adalah 86
c)            Berapa percepatan rata-ratanya ?
v1 = 12t12 + 16t1 + 6
v2 = 12t22 + 16t2 + 6
De piter, t1 dan t2 berapa ?
Masukan saja nilai t1 dan t2 ke dalam persamaan v1 dan v2. Setelah itu cari arata-rata.
Referensi :
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Perpindahan Kalor

0 komentar

Perpindahan Kalor

Kalor dapat berpindah dari satu tempat ke tempat lain. Bagaimanakah cara kalor itu berpindah? Kalor dapat berpindah dengan tiga cara, yaitu konduksi atau hantaran, konveksi atau aliran, dan radiasi atau pancaran.

1. Konduksi

    Bagaimanakah perpindahan kalor secara konduksi? Lakukan kegiatan berikut!

Konduksi adalah perpindahan kalor melalui suatu zat tanpa disertai perpindahan partikel-partikel zat tersebut.
Berdasarkan daya hantar kalor, benda dibedakan menjadi dua, yaitu:
1) Konduktor
Konduktor adalah zat yang memiliki daya hantar kalor baik. Contoh : besi, baja, tembaga, aluminium, dll
2) Isolator
Isolator adalah zat yang memiliki daya hantar kalor kurang baik. Contoh : kayu, plastik, kertas, kaca, air, dll

Dalam kehidupan sehari-hari, dapat kamu jumpai peralatan rumah tangga yang prinsip kerjanya memanfaatkan konsep perpindahan kalor secara konduksi, antara lain : setrika listrik, solder. Mengapa alat-alat rumah tangga seperti setrika, solder, panci, wajan terdapat pegangan dari bahan isolator? Hal ini bertujuan untuk menghambat konduksi panas supaya tidak sampai ke tangan kita.

2. Konveksi

 Konveksi adalah perpindahan kalor pada suatu zat yang disertai perpindahan partikel-partikel zat tersebut.

Konveksi terjadi karena perbedaan massa jenis zat. Kamu dapat memahami peristiwa konveksi, antara lain:
1) Pada zat cair karena perbedaan massa jenis zat, misal sistem pemanasan air, sistem aliran air panas.
2) Pada zat gas karena perbedaan tekanan udara, misal terjadinya angin darat dan angin laut, sistem ventilasi udara, untuk mendapatkan udara yang lebih dingin dalam ruangan dipasang AC atau kipas angin, dan cerobong asap pabrik.

Agar kamu lebih dapat memahami konveksi, lakukan kegiatan berikut!

Dari kegiatan yang kamu lakukan dapat ditarik kesimpulan bahwa, aliran di dalam gelas disebabkan karena perbedaan massa jenis zat. Air yang menyentuh bagian bawah gelas kimia tersebut dipanasi dengan cara konduksi. Akibat air menerima kalor, maka air akan memuai dan menjadi kurang rapat. Air yang lebih rapat pada bagian atas itu turun mendorong air panas menuju ke atas. Gerakan ini menimbulkan arus kon-veksi. Pada bagian zat cair yang dipanaskan akan memiliki massa  jenis menurun sehingga mengalir naik ke atas. Pada bagian tepi zat cair yang dipanaskan konveksi yang terjadi seperti ditunjukkan pada gambar di bawah ini.

Pada bagian tengah zat cair yang dipanaskan, konveksi yang terjadi seperti ditunjukkan pada gambar berikut.


Dari kegiatan yang kamu lakukan terlihat bahwa asap turun di dalam cerobong yang tidak dipanaskan. Pada cerobong yang dipanaskan tekanan udara kecil sehingga asap akan bergerak naik ke atas. Aliran udara yang terlihat itulah yang menunjukkan konveksi pada zat gas. Tahukah kamu mengapa cerobong asap pabrik di buat tinggi? Coba kamu cari tahu alasannya! Angin laut dan angin darat merupakan contoh peristiwa alam yang melibatkan arus konveksi pada zat gas. Tahukah kamu bagaimana terjadinya angin laut dan angin darat? Coba perhatikan gambar di bawah ini!


Pada siang hari daratan lebih cepat panas daripada lautan. Hal ini mengakibatkan udara panas di daratan akan naik dan tempat tersebut diisi oleh udara dingin dari permukaan laut, sehingga terjadi gerakan udara dari laut menuju ke darat yang biasa disebut angin laut. Angin laut terjadi pada siang hari, biasa digunakan oleh nelayan tradisional untuk pulang ke daratan. Bagaimanakah angin darat terjadi?









Pada malam hari daratan lebih cepat dingin daripada lautan. Hal ini mengakibatkan udara panas di permukaan air laut akan naik dan tempat tersebut diisi oleh udara dingin dari daratan, sehingga terjadi gerakan udara dari darat menuju ke laut yang biasa disebut angin darat. Angin darat terjadi pada malam hari, biasa digunakan oleh nelayan tradisional untuk melaut mencari ikan.

3. Radiasi atau pancaran

Radiasi adalah perpindahan kalor tanpa melalui zat perantara. Saat acara api unggun pada kegiatan Pramuka di sekolahmu, apa yang dapat kamu rasakan saat kamu berada di sekitar nyala api unggun? Kamu akan merasakan hangatnya api unggun dari jarak berjauhan. Bagaimanakah panas api unggun dapat sampai ke badanmu? Kalor yang kamu terima dari nyala api unggun disebabkan oleh energi pancaran. Alat yang digunakan untuk mengetahui adanya radiasi kalor atau energi pancaran kalor disebut termoskop. Termoskop terdiri dari dua buah bola kaca yang dihubungkan dengan pipa U berisi air alkohol yang diberi pewarna. Perhatikan gambar!

Salah satu bola lampu dicat hitam, sedangkan yang lain dicat putih. Apabila pancaran kalor mengenai bola A, hal ini mengakibatkan tekanan gas pada bola A menjadi besar. Hal ini mengakibatkan turunnya permukaan zat cair yang ada di bawahnya. Bagaimanakah sifat radiasi dari berbagai permukaan? Sifat radiasi berbagai permukaan dapat diselidiki dengan menggunakan alat termoskop diferensial. Alat yang digunakan untuk menyelidiki sifat radiasi berbagai permukaan disebut termoskop diferensial. Kedua bola lampu dicat dengan warna yang sama, tetapi di antara bola tersebut diletakkan bejana kubus yang salah satu sisinya permukaannya hitam kusam dan sisi lainnya mengkilap. Jika bejana kubus diisi dengan air panas, akan terlihat permukaan alkohol di bawah bola B turun.  Perbedaan ini disebabkan karena kalor yang diserap bola B lebih besar daripada bola A. Dari hasil pengamatan yang dilakukan dapat ditarik kesimpulan bahwa:
1) Permukaan benda hitam, kusam, dan kasar merupakan pemancar dan penyerap kalor yang baik.
2) Permukaan benda putih, mengkilap dan halus merupakan pemancar dan penyerap kalor yang buruk

Manfaat Kalor dalam Kehidupan Sehari-hari

Gerak Melingkar

0 komentar

Pengantar
Setiap hari kita selalu melihat sepeda motor, mobil, pesawat atau kendaraan beroda lainnya. Apa yang terjadi seandainya kendaraan tersebut tidak mempunyai roda ? yang pasti kendaraan tersebut tidak akan bergerak. Sepeda motor atau mobil dapat berpindah tempat dengan mudah karena rodanya berputar, demikian juga pesawat terbang tidak akan lepas landas jika terdapat kerusakan fungsi roda. Putaran roda merupakan salah satu contoh gerak melingkar yang selalu kita temui dalam kehidupan sehari-hari, walaupun sering luput dari perhatian kita. Permainan gasing merupakan contoh lainnya. Sangat banyak gerakan benda yang berbentuk melingkar yang dapat kita amati dalam kehidupan sehari-hari, termasuk gerakan mobil/sepeda motor pada tikungan jalan, gerakan planet kesayangan kita (bumi), planet-planet lainnya, satelit, bintang dan benda angkasa yang lain. Anda dapat menyebutnya satu persatu.
Setiap benda yang bergerak membentuk suatu lingkaran dikatakan melakukan gerakan melingkar. Sebelum membahas lebih jauh mengenai gerak melingkar, terlebih dahulu kita pelajari besaran-besaran fisis dalam gerak melingkar.
Besaran-Besaran Fisis dalam Gerak Melingkar
(Perpindahan Sudut, Kecepatan sudut dan Percepatan Sudut)
Dalam gerak lurus kita mengenal tiga besaran utama yaitu perpindahan (linear), kecepatan (linear) dan Percepatan (linear). Gerak melingkar juga memiliki tiga komponen tersebut, yaitu perpindahan sudut, kecepatan sudut dan percepatan sudut. Pada gerak lurus kita juga mengenal Gerak Lurus Beraturan dan Gerak Lurus Berubah Beraturan. Dalam gerak melingkar juga terdapat Gerak Melingkar Beraturan (GMB) dan Gerak Melingkar Berubah Beraturan (GMBB). Selengkapnya akan kita bahas satu persatu. Sekarang mari kita berkenalan (kaya manusia aja ya) dengan besaran-besaran dalam gerak melingkar dan melihat hubungannya dengan besaran fisis gerak lurus.
Perpindahan Sudut
Mari kita tinjau sebuah contoh gerak melingkar, misalnya gerak roda kendaraan yang berputar. Ketika roda berputar, tampak bahwa selain poros alias pusat roda, bagian lain roda lain selalu berpindah terhadap pusat roda sebagai kerangka acuan. Perpindahan pada gerak melingkar disebut perpindahan sudut. Bagaimana caranya kita mengukur perpindahan sudut ?
Ada tiga cara menghitung sudut. Cara pertama adalah menghitung sudut dalam derajat (o). Satu lingkaran penuh sama dengan 360o. Cara kedua adalah mengukur sudut dalam putaran. Satu lingkaran penuh sama dengan satu putaran. Dengan demikian, satu putaran = 360o. Cara ketiga adalah dengan radian. Radian adalah satuan Sistem Internasional (SI) untuk perpindahan sudut, sehingga satuan ini akan sering kita gunakan dalam perhitungan. Bagaimana mengukur sudut dengan radian ?
Mari kita amati gambar di bawah ini.
Nilai radian dalam sudut adalah perbandingan antara jarak linear x dengan jari-jari roda r. Jadi,
Perhatikan bahwa satu putaran sama dengan keliling lingkaran, sehingga dari persamaan di atas, diperoleh :
Derajat, putaran dan radian adalah besaran yang tidak memiliki dimensi. Jadi, jika ketiga satuan ini terlibat dalam suatu perhitungan, ketiganya tidak mengubah satuan yang lain.
Kecepatan Sudut
Dalam gerak lurus, kecepatan gerak benda umumnya dinyatakan dengan satuan km/jam atau m/s. Telah kita ketahui bahwa tiap bagian yang berbeda pada benda yang melakukan gerak lurus memiliki kecepatan yang sama, misalnya bagian depan mobil mempunyai kecepatan yang sama dengan bagian belakang mobil yang bergerak lurus.
Dalam gerak melingkar, bagian yang berbeda memiliki kecepatan yang berbeda. Misalnya gerak roda yang berputar. Bagian roda yang dekat dengan poros bergerak dengan kecepatan linear yang lebih kecil, sedangkan bagian yang jauh dari poros alias pusat roda bergerak dengan kecepatan linear yang lebih besar. Oleh karena itu, bila kita menyatakan roda bergerak melingkar dengan kelajuan 10 m/s maka hal tersebut tidak bermakna, tetapi kita bisa mengatakan tepi roda bergerak dengan kelajuan 10 m/s.
Pada gerak melingkar, kelajuan rotasi benda dinyatakan dengan putaran per menit (biasa disingkat rpmrevolution per minute). Kelajuan yang dinyatakan dengan satuan rpm adalah kelajuan sudut. Dalam gerak melingkar, kita juga dapat menyatakan arah putaran. misalnya kita menggunakan arah putaran jarum jam sebagai patokan. Oleh karena itu, kita dapat menyatakan kecepatan sudut, di mana selain menyatakan kelajuan sudut, juga menyatakan arahnya (ingat perbedaan kelajuan dan kecepatan, mengenai hal ini sudah Gurumuda terangkan pada Pokok bahasan Kinematika). Jika kecepatan pada gerak lurus disebut kecepatan linear (benda bergerak pada lintasan lurus), maka kecepatan pada gerak melingkar disebut kecepatan sudut, karena benda bergerak melalui sudut tertentu.
Terdapat dua jenis kecepatan pada Gerak Lurus, yakni kecepatan rata-rata dan kecepatan sesaat. Kita dapat mengetahui kecepatan rata-rata pada Gerak Lurus dengan membandingkan besarnya perpindahan yang ditempuh oleh benda dan waktu yang dibutuhkan benda untuk bergerak . Nah, pada gerak melingkar, kita dapat menghitung kecepatan sudut rata-rata dengan membandingkan perpindahan sudut dengan selang waktu yang dibutuhkan ketika benda berputar. Secara matematis kita tulis :
Bagaimana dengan kecepatan sudut sesaat ?
Kecepatan sudut sesaat kita diperoleh dengan membandingkan perpindahan sudut dengan selang waktu yang sangat singkat. Secara matematis kita tulis :
Sesuai dengan kesepakatan ilmiah, jika ditulis kecepatan sudut maka yang dimaksud adalah kecepatan sudut sesaat. Kecepatan sudut termasuk besaran vektor. Vektor kecepatan sudut hanya memiliki dua arah (searah dengan putaran jarum jam atau berlawanan arah dengan putaran jarum jam), dengan demikian notasi vektor omega dapat ditulis dengan huruf miring dan cukup dengan memberi tanda positif atau negatif. Jika pada Gerak Lurus arah kecepatan sama dengan arah perpindahan, maka pada Gerak Melingkar, arah kecepatan sudut sama dengan arah perpindahan sudut.
Percepatan Sudut
Dalam gerak melingkar, terdapat percepatan sudut apabila ada perubahan kecepatan sudut. Percepatan sudut terdiri dari percepatan sudut sesaat dan percepatan sudut rata-rata. Percepatan sudut rata-rata diperoleh dengan membandingkan perubahan kecepatan sudut dan selang waktu. Secara matematis ditulis :
Percepatan sudut sesaat diperoleh dengan membandingkan perubahan sudut dengan selang waktu yang sangat singkat. Secara matematis ditulis :
Satuan percepatan sudut dalam Sistem Internasional (SI) adalah rad/s2 atau rad-2
HUBUNGAN ANTARA BESARAN GERAK LURUS DAN GERAK MELINGKAR
Pada pembahasan sebelumnya, kita telah mempelajari tentang besaran fisis Gerak Melingkar, meliputi Perpindahan Sudut, Kecepatan Sudut dan Percepatan Sudut. Apakah besaran Gerak Melingkar tersebut memiliki hubungan dengan besaran fisis gerak lurus (perpindahan linear, kecepatan linear dan percepatan linear) ?
Dalam gerak melingkar, arah kecepatan linear dan percepatan linear selalu menyinggung lingkaran. Karenanya, dalam gerak melingkar, kecepatan linear dikenal juga sebagai kecepatan tangensial dan percepatan linear disebut juga sebagai percepatan tangensial.
Hubungan antara Perpindahan Linear dengan Perpindahan sudut
Pada gerak melingkar, apabila sebuah benda berputar terhadap pusat/porosnya maka setiap bagian benda tersebut bergerak dalam suatu lingkaran yang berpusat pada poros tersebut. Misalnya gerakan roda yang berputar atau bumi yang berotasi. Ketika bumi berotasi, kita yang berada di permukaan bumi juga ikut melakukan gerakan melingkar, di mana gerakan kita berpusat pada pusat bumi. Ketika kita berputar terhadap pusat bumi, kita memiliki kecepatan linear, yang arahnya selalu menyinggung lintasan rotasi bumi. Pemahaman konsep ini akan membantu kita dalam melihat hubungan antara perpindahan linear dengan perpindahan sudut. Bagaimana hubungan antara perpindahan linear dengan perpindahan sudut ?
Perhatikanlah gambar di bawah ini.
Ketika benda berputar terhadap poros O, titik A memiliki kecepatan linear (v) yang arahnya selalu menyinggung lintasan lingkaran.
Hubungan antara perpindahan linear titik A yang menempuh lintasan lingkaran sejauh x dan perpindahan sudut teta (dalam satuan radian), dinyatakan sebagai berikut :
Di mana r merupakan jarak titik A ke pusat lingkaran/jari-jari lingkaran.
Hubungan antara Kecepatan Tangensial dengan Kecepatan sudut
Besarnya kecepatan linear (v) benda yang menempuh lintasan lingkaran sejauh delta x dalam suatu waktu dapat dinyatakan dengan persamaan :
Sekarang kita subtitusikan delta x pada persamaan 2 ke dalam persamaan 1
Dari persamaan di atas tampak bahwa semakin besar nilai r (semakin jauh suatu titik dari pusat lingkaran), maka semakin besar kecepatan linearnya dan semakin kecil kecepatan sudutnya.
Hubungan antara Percepatan Tangensial dengan Percepatan Sudut
Besarnya percepatan tangensial untuk perubahan kecepatan linear selama selang waktu tertentu dapat kita nyatakan dengan persamaan
at = percepatan tangensial, r = jarak ke pusat lingkaran (jari-jari lingkaran) dan alfa= percepatan sudut. Berdasarkan persamaan ini, tampak bahwa semakin jauh suatu titik dari pusat lingkaran maka semakin besar percepatan tangensialnya dan semakin kecil percepatan sudut.
Semua persamaan yang telah diturunkan di atas kita tulis kembali pada tabel di bawah ini.
Catatan : Pada gerak melingkar, semua titik pada benda yang melakukan gerak melingkar memiliki perpindahan sudut, kecepatan sudut dan percepatan sudut yang sama, tetapi besar perpindahan linear, kecepatan tangensial dan percepatan tangensial berbeda-beda, bergantung pada besarnya jari-jari (r)
Latihan Soal 1 :
Sebuah roda melakukan 900 putaran dalam waktu 30 detik. Berapakah kecepatan sudut rata-ratanya dalam satuan rad/s ?
Panduan Jawaban :

Latihan Soal 2 :
Sebuah CD yang memiliki jari-jari 5 cm berputar melalui sudut 90o. Berapakah jarak yang ditempuh oleh sebuah titik yang terletak pada tepi CD tersebut ?
Panduan Jawaban
Terlebih dahulu kita ubah satuan derajat ke dalam radian (rad).
Setelah memperoleh data yang dibutuhkan, kita dapat menghitung jarak tempuh titik yang terletak di tepi CD
Catatan : lambang r digunakan untuk jari-jari lintasan yang berbentuk lingkaran, sedangkan lambang R digunakan untuk jari-jari benda yang memiliki bentuk bundar alias lingkaran.
Latihan Soal 3 :
Sebuah roda sepeda motor berputar terhadap porosnya ketika sepeda motor tersebut bergerak. Sebuah titik berada pada jarak 10 cm dari pusat roda, dan berputar dengan kecepatan sudut 5 rad/s dan memiliki percepatan sudut sebesar 2 rad/s2. Berapakah kecepatan tangensial dan percepatan tangensial sebuah titik yang berjarak 5 cm dan 15 cm dari pusat roda sepeda motor tersebut ?
Panduan Jawaban :
Kecepatan sudut (omega) = 5 rad/s dan percepatan sudut (alfa) = 2 rad/s2
Referensi :
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga